Nickel Coated Nonwovens

Conductive Composites uses a unique and proprietary reel-to-reel Chemical Vapor Deposition (CVD) process to place a continuous ductile conductive coating over every surface of a finished nonwoven, including fibers and binders.

Traditional nonwovens are produced by chopping and binding conductive fibers, with corresponding limitations in weight, caliper, and conductivity. Our CVD coated nonwovens are ultra-lightweight, robust, uniform, and highly conductive as a standalone component or when infused. Our nonwoven can be used as a standalone self-supporting sheet, embedded in polymers (such as tapes or resins), or cured into composite surfaces/structures. High levels of electrical conductivity and broadband electromagnetic shielding can be inserted into applications at very attractive weight and cost points.

Product Advantages

- Ultra lightweight and conductive with highly effective broadband shielding
- Ductile, uniform coatings layer on all surfaces, including over binders
- Ability to combine elements in multiple layers
- No change in conductivity when infused or cured
- Naturally corrosion resistant
- Conductivity with thin coatings leads to lower caliper
- Coating substrates include carbon, aramid, cellulose, and other fiber types.
- Coated nonwoven can be wet processed (binder is protected)
- Coating is ferromagnetic
- Increased weight and cost savings compared to traditional solutions
- Improved material capabilities

Fiber Types

Our CVD technology allows a wide range of fiber types to be coated including cellulose, silk, cotton, jute and even carbon nano materials to name a few. Contact us to find out what other materials are available.
NiShield Nickel CVD Coated Nonwovens

<table>
<thead>
<tr>
<th>Product #</th>
<th>Substrate Type</th>
<th>Surface Resistivity (ohm/square)</th>
<th>Nominal Specification (ohm/square)</th>
<th>Conductivity (S/cm)</th>
<th>Basis Weight (grams/m²)</th>
<th>Caliper, Thickness (inch)</th>
<th>Single-layer, X band EMI Shielding (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1-208</td>
<td>Carbon Fiber</td>
<td>1</td>
<td>0.7 to 1.5</td>
<td>200</td>
<td>8</td>
<td>0.0018</td>
<td>41</td>
</tr>
<tr>
<td>2-0.5-208</td>
<td>Carbon Fiber</td>
<td>0.5</td>
<td>0.3 to 0.6</td>
<td>400</td>
<td>11</td>
<td>0.002</td>
<td>49</td>
</tr>
<tr>
<td>2-0.1-208</td>
<td>Carbon Fiber</td>
<td>0.1</td>
<td>0.08 to 0.2</td>
<td>2000</td>
<td>18</td>
<td>0.0022</td>
<td>62</td>
</tr>
<tr>
<td>2-0.04-208</td>
<td>Carbon Fiber</td>
<td>0.04</td>
<td>0.03 to 0.07</td>
<td>4000</td>
<td>35</td>
<td>0.0025</td>
<td>66</td>
</tr>
<tr>
<td>2-0.02-208</td>
<td>Carbon Fiber</td>
<td>0.02</td>
<td>0.012 to 0.025</td>
<td>6000</td>
<td>60</td>
<td>0.0031</td>
<td>67</td>
</tr>
<tr>
<td>2-0.1-3CC</td>
<td>Cellulose blend</td>
<td>0.1</td>
<td>0.08 to 0.2</td>
<td>1600</td>
<td>50</td>
<td>0.0025</td>
<td>65</td>
</tr>
<tr>
<td>2-0.04-3CC</td>
<td>Cellulose blend</td>
<td>0.04</td>
<td>0.03 to 0.07</td>
<td>3300</td>
<td>62</td>
<td>0.003</td>
<td>72</td>
</tr>
</tbody>
</table>

Inquire about additional substrate options, nickel coating levels, converted widths, dual layer constructions, and infusion options.

Chemical Vapor Deposition (CVD)

Conductive Composites’ proprietary process provides continuously coated fibers and provides many advantages over traditional methods of coating fibers.

Conductive Composites believes these values to be typical, however, Conductive Composites does not assume any liability whatsoever for accuracy or completeness of any information contained in this document. Conductive Composites does not warrant this product with respect to merchantability or suitability for use, including any intellectual property or trade restrictions, which is the sole responsibility of the purchaser and/or end user. Always refer to materials handling instructions and safety documentation when using this or any other material. ©2014 Conductive Composites Enterprises, LLC.